Fluid Simulation on Neural Flow Maps

Author:

Deng Yitong1,Yu Hong-Xing2,Zhang Diyang1,Wu Jiajun2,Zhu Bo3

Affiliation:

1. Dartmouth College, USA

2. Stanford University, USA

3. Georgia Institute of Technology, USA and Dartmouth College, USA

Abstract

We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of in-viscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapping, multi-resolution, and spatially sparse grids, to compactly represent long-term spatiotemporal velocity fields at high accuracy. With this neural velocity buffer in hand, we compute long-term, bidirectional flow maps and their Jacobians in a mechanistically symmetric manner, to facilitate drastic accuracy improvement over existing solutions. These long-range, bidirectional flow maps enable high advection accuracy with low dissipation, which in turn facilitates high-fidelity incompressible flow simulations that manifest intricate vortical structures. We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences. Our examples show increased performance over existing methods in terms of energy conservation, visual complexity, adherence to experimental observations, and preservation of detailed vortical structures.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference129 articles.

1. A practical octree liquid simulator with adaptive surface resolution

2. A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients

3. Steven L Brunton , Bernd R Noack , and Petros Koumoutsakos . 2020. Machine learning for fluid mechanics. Annual review of fluid mechanics 52 ( 2020 ), 477--508. Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. 2020. Machine learning for fluid mechanics. Annual review of fluid mechanics 52 (2020), 477--508.

4. Tomas F. Buttke. 1992. Lagrangian Numerical Methods Which Preserve the Hamiltonian Structure of Incompressible Fluid Flow. https://api.semanticscholar.org/CorpusID:125992412 Tomas F. Buttke. 1992. Lagrangian Numerical Methods Which Preserve the Hamiltonian Structure of Incompressible Fluid Flow. https://api.semanticscholar.org/CorpusID:125992412

5. Rohan Chabra , Jan E Lenssen , Eddy Ilg , Tanner Schmidt , Julian Straub , Steven Lovegrove , and Richard Newcombe . 2020 . Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In Computer Vision-ECCV 2020:16th European Conference, Glasgow, UK, August 23--28, 2020 , Proceedings, Part XXIX 16 . Springer, 608--625. Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. 2020. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In Computer Vision-ECCV 2020:16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXIX 16. Springer, 608--625.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3