Predictable GPU Wavefront Splitting for Safety-Critical Systems

Author:

Klashtorny Artem1ORCID,Wu Zhuanhao1ORCID,Kaushik Anirudh Mohan2ORCID,Patel Hiren1ORCID

Affiliation:

1. University of Waterloo, Canada

2. Intel of Canada, Canada

Abstract

We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference23 articles.

1. Advanced Micro Devices. 2016. Graphics Core Next Architecture Reference Guide. (2016).

2. Advanced Micro Devices. 2019. Introducing RDNA Architecture. (2019).

3. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed

4. Computer and Redundancy Solution for the Full Self-Driving Computer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3