The Internet of Things

Author:

Stolpe Marco1

Affiliation:

1. Artificial Intelligence Group, LS 8, Department of Computer Science, TU Dortmund, Dortmund, Germany

Abstract

Nowadays, data is created by humans as well as automatically collected by physical things, which embed electronics, software, sensors and network connectivity. Together, these entities constitute the Internet of Things (IoT). The automated analysis of its data can provide insights into previously unknown relationships between things, their environment and their users, facilitating an optimization of their behavior. Especially the real-time analysis of data, embedded into physical systems, can enable new forms of autonomous control. These in turn may lead to more sustainable applications, reducing waste and saving resources IoT's distributed and dynamic nature, resource constraints of sensors and embedded devices as well as the amounts of generated data are challenging even the most advanced automated data analysis methods known today. In particular, the IoT requires a new generation of distributed analysis methods. Many existing surveys have strongly focused on the centralization of data in the cloud and big data analysis, which follows the paradigm of parallel high-performance computing. However, bandwidth and energy can be too limited for the transmission of raw data, or it is prohibited due to privacy constraints. Such communication-constrained scenarios require decentralized analysis algorithms which at least partly work directly on the generating devices. After listing data-driven IoT applications, in contrast to existing surveys, we highlight the differences between cloudbased and decentralized analysis from an algorithmic perspective. We present the opportunities and challenges of research on communication-efficient decentralized analysis algorithms. Here, the focus is on the difficult scenario of vertically partitioned data, which covers common IoT use cases. The comprehensive bibliography aims at providing readers with a good starting point for their own work

Publisher

Association for Computing Machinery (ACM)

Reference117 articles.

1. The Internet of Things: A Survey from the Data-Centric Perspective

2. Argonne National Laboratory. The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/research/projects/mpi/ 2015. {Online; accessed 2015-12-15}. Argonne National Laboratory. The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/research/projects/mpi/ 2015. {Online; accessed 2015-12-15}.

3. The Internet of Things: A survey

4. Autonomous Driving: Disruptive Innovation that Promises to Change the Automotive Industry as We Know It

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3