Affiliation:
1. University of Maryland
Abstract
Topic detection with large and noisy data collections such as social media must address both scalability and accuracy challenges. KeyGraph is an efficient method that improves on current solutions by considering keyword cooccurrence. We show that KeyGraph has similar accuracy when compared to state-of-the-art approaches on small, well-annotated collections, and it can successfully filter irrelevant documents and identify events in large and noisy social media collections. An extensive evaluation using Amazon’s Mechanical Turk demonstrated the increased accuracy and high precision of KeyGraph, as well as superior runtime performance compared to other solutions.
Funder
Division of Information and Intelligent Systems
Division of Civil, Mechanical and Manufacturing Innovation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献