Multimodal behavior and interaction as indicators of cognitive load

Author:

Chen Fang1,Ruiz Natalie1,Choi Eric1,Epps Julien1,Khawaja M. Asif1,Taib Ronnie1,Yin Bo1,Wang Yang1

Affiliation:

1. NICTA, Australia

Abstract

High cognitive load arises from complex time and safety-critical tasks, for example, mapping out flight paths, monitoring traffic, or even managing nuclear reactors, causing stress, errors, and lowered performance. Over the last five years, our research has focused on using the multimodal interaction paradigm to detect fluctuations in cognitive load in user behavior during system interaction. Cognitive load variations have been found to impact interactive behavior: by monitoring variations in specific modal input features executed in tasks of varying complexity, we gain an understanding of the communicative changes that occur when cognitive load is high. So far, we have identified specific changes in: speech, namely acoustic, prosodic, and linguistic changes; interactive gesture; and digital pen input, both interactive and freeform. As ground-truth measurements, galvanic skin response, subjective, and performance ratings have been used to verify task complexity. The data suggest that it is feasible to use features extracted from behavioral changes in multiple modal inputs as indices of cognitive load. The speech-based indicators of load, based on data collected from user studies in a variety of domains, have shown considerable promise. Scenarios include single-user and team-based tasks; think-aloud and interactive speech; and single-word, reading, and conversational speech, among others. Pen-based cognitive load indices have also been tested with some success, specifically with pen-gesture, handwriting, and freeform pen input, including diagraming. After examining some of the properties of these measurements, we present a multimodal fusion model, which is illustrated with quantitative examples from a case study. The feasibility of employing user input and behavior patterns as indices of cognitive load is supported by experimental evidence. Moreover, symptomatic cues of cognitive load derived from user behavior such as acoustic speech signals, transcribed text, digital pen trajectories of handwriting, and shapes pen, can be supported by well-established theoretical frameworks, including O'Donnell and Eggemeier's workload measurement [1986] Sweller's Cognitive Load Theory [Chandler and Sweller 1991], and Baddeley's model of modal working memory [1992] as well as McKinstry et al.'s [2008] and Rosenbaum's [2005] action dynamics work. The benefit of using this approach to determine the user's cognitive load in real time is that the data can be collected implicitly that is, during day-to-day use of intelligent interactive systems, thus overcomes problems of intrusiveness and increases applicability in real-world environments, while adapting information selection and presentation in a dynamic computer interface with reference to load.

Funder

NICTA

Australian Government

Australian Research Council

Air Force Office of Scientific Research

Department of Broadband, Communications and the Digital Economy , Australian Government

ICT Center of Excellence program

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3