Game-Based Task Offloading of Multiple Mobile Devices with QoS in Mobile Edge Computing Systems of Limited Computation Capacity

Author:

Hu Junyan1,Li Kenli1,Liu Chubo1,Li Keqin2ORCID

Affiliation:

1. Hunan University, Lushan South Road, Changsha, China

2. Hunan University and State University of New York, New Paltz, New York

Abstract

Mobile edge computing (MEC) is becoming a promising paradigm of providing computing servers, like cloud computing, to Edge node. Compared to cloud servers, MECs are deployed closer to mobile devices (MDs) and can provide high quality-of-service (QoS; including high bandwidth, low latency, etc) for MDs with computation-intensive and delay-sensitive tasks. Faced with many MDs with high QoS requirements, MEC with limited computation capacity should consider how to allocate the computing resources to MDs to maximize the number of served MDs. Besides, for each MD, he/she wants to minimize the energy consumption within an acceptance delay range. To solve these issues, we propose a Game-based Computation Offloading (GCO) algorithm including a task offloading profile of MEC and the transmission power controlling of each MD. Specifically, we propose a Greedy-Pruning algorithm to determine the MDs that can offload the tasks to MEC. Meanwhile, each MD competes the computing resources by using his/her transmission power-controlling strategy. We illustrate the problem of task offloading for multi-MD as a non-cooperative game model, in which the information of each player (MDs) is incomplete for others and each player wishes to maximize his/her own benefit. We prove the existence of the Nash equilibrium solution of our proposed game model. Then, it is proved that the transmission power solution sequence obtained from GCO algorithm converges to the Nash equilibrium solution. Extensive simulated experiments are shown and the comparison experiments with the state-of-the-art and benchmark solutions validate and show the feasibility of the proposed method.

Funder

National Outstanding Youth Science Program of National Natural Science Foundation of China

Program of National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3