Interactive High-Quality Green-Screen Keying via Color Unmixing

Author:

Aksoy Yağiz1,Aydin Tunç Ozan2,Pollefeys Marc3,Smolić Aljoša2

Affiliation:

1. ETH Zürich and Disney Research Zürich, Zurich, Switzerland

2. Disney Research Zürich, Zurich, Switzerland

3. ETH Zürich, Zurich, Switzerland

Abstract

Due to the widespread use of compositing in contemporary feature films, green-screen keying has become an essential part of postproduction workflows. To comply with the ever-increasing quality requirements of the industry, specialized compositing artists spend countless hours using multiple commercial software tools, while eventually having to resort to manual painting because of the many shortcomings of these tools. Due to the sheer amount of manual labor involved in the process, new green-screen keying approaches that produce better keying results with less user interaction are welcome additions to the compositing artist’s arsenal. We found that—contrary to the common belief in the research community—production-quality green-screen keying is still an unresolved problem with its unique challenges. In this article, we propose a novel green-screen keying method utilizing a new energy minimization-based color unmixing algorithm. We present comprehensive comparisons with commercial software packages and relevant methods in literature, which show that the quality of our results is superior to any other currently available green-screen keying solution. It is important to note that, using the proposed method, these high-quality results can be generated using only one-tenth of the manual editing time that a professional compositing artist requires to process the same content having all previous state-of-the-art tools at one’s disposal.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization;ACM Transactions on Graphics;2023-07-26

2. LoCoPalettes: Local Control for Palette‐based Image Editing;Computer Graphics Forum;2023-07

3. Effective Eyebrow Matting with Domain Adaptation;Computer Graphics Forum;2022-10

4. Automatic and real-time green screen keying;The Visual Computer;2022-06-20

5. Human Instance Matting via Mutual Guidance and Multi-Instance Refinement;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3