Affiliation:
1. SSN College of Engineering, India
Abstract
Machine translation is the core problem for several natural language processing research across the globe. However, building a translation system involving low-resource languages remains a challenge with respect to statistical machine translation (SMT). This work proposes and studies the effect of a phrase-induced hybrid machine translation system for translation from English to Tamil, under a low-resource setting. Unlike conventional hybrid MT systems, the free-word ordering feature of the target language Tamil is exploited to form a re-ordered target language model and to extend the parallel text corpus for training the SMT. In the current work, a novel rule-based phrase-extraction method, implemented using parts-of-speech (POS) and place-of-pause in both languages is proposed, which is used to pre-process the training corpus for developing the back-off phrase-induced SMT. Further, out-of-vocabulary (OOV) words are handled using speech-based transliteration and two-level thesaurus intersection techniques based on the POS tag of the OOV word. To ensure that the input with OOV words does not skip phrase-level translation in the hierarchical model, a phrase-level example-based machine translation approach is adopted to find the closest matching phrase and perform translation followed by OOV replacement. The proposed system results in a bilingual evaluation understudy score of 84.78 and a translation edit rate of 19.12. The performance of the system is compared in terms of adequacy and fluency, with existing translation systems for this specific language pair, and it is observed that the proposed system outperforms its counterparts.
Publisher
Association for Computing Machinery (ACM)
Reference35 articles.
1. Factored statistical machine translation system for English to Tamil language;Kumar M. Anand;Pertanika Journal of Social Science and Humanities,2014
2. Adequacy–Fluency Metrics: Evaluating MT in the Continuous Space Model Framework
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献