KenSwQuAD—A Question Answering Dataset for Swahili Low-resource Language

Author:

Wanjawa Barack W.1ORCID,Wanzare Lilian D. A.2ORCID,Indede Florence2ORCID,Mconyango Owen2ORCID,Muchemi Lawrence1ORCID,Ombui Edward3ORCID

Affiliation:

1. University of Nairobi, Nairobi, Kenya

2. Maseno University, Maseno, Kenya

3. Africa Nazarene University, Nairobi, Kenya

Abstract

The need for question-answering (QA) datasets in low-resource languages is the motivation of this research, leading to the development of the Kencorpus Swahili Question Answering Dataset (KenSwQuAD). This dataset is annotated from raw story texts of Swahili, a low-resource language that is predominantly spoken in eastern Africa and in other parts of the world. Question-answering datasets are important for machine comprehension of natural language for tasks such as internet search and dialog systems. Machine learning systems need training data such as the gold-standard question-answering set developed in this research. The research engaged annotators to formulate QA pairs from Swahili texts collected by the Kencorpus project, a Kenyan languages corpus. The project annotated 1,445 texts from the total 2,585 texts with at least 5 QA pairs each, resulting in a final dataset of 7,526 QA pairs. A quality assurance set of 12.5% of the annotated texts confirmed that the QA pairs were all correctly annotated. A proof of concept on applying the set to the QA task confirmed that the dataset can be usable for such tasks. KenSwQuAD has also contributed to resourcing of the Swahili language.

Funder

Meridian Institute through Lacuna Fund

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference45 articles.

1. Glove: Global Vectors for Word Representation

2. J. Devlin M.-W. Chang K. Lee and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. Retrieved from https://arxiv.org/abs/1810.04805.

3. J. Libovický R. Rosa and A. Fraser. 2019. How language-neutral is multilingual BERT?. arXiv:1911.03310. Retrieved from https://arxiv.org/abs/1911.03310.

4. P. Rajpurkar J. Zhang K. Lopyrev and P. Liang. 2016. Squad: 100 000+ questions for machine comprehension of text. arXiv:1606.05250. Retrieved from https://arxiv.org/abs/1606.05250.

5. M. Richardson, C. J. C. Burges, and E. Renshaw. 2013. MCTest: A challenge dataset for the open-domain machine comprehension of text. In –Proceedings of the Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (EMNLP’13). 193–203.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MbAbI: A Benchmark Dataset for Malayalam Text Understanding and Reasoning;Lecture Notes in Networks and Systems;2024

2. The First Swahili Language Scene Text Detection and Recognition Dataset;Lecture Notes in Computer Science;2024

3. Explainable Machine Learning Models for Swahili News Classification;Proceedings of the 2023 7th International Conference on Natural Language Processing and Information Retrieval;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3