Hierarchical Pruning of Deep Ensembles with Focal Diversity

Author:

Wu Yanzhao1ORCID,Chow Ka-Ho2ORCID,Wei Wenqi2ORCID,Liu Ling2ORCID

Affiliation:

1. Florida International University, USA

2. Georgia Institute of Technology, USA

Abstract

Deep neural network ensembles combine the wisdom of multiple deep neural networks to improve the generalizability and robustness over individual networks. It has gained increasing popularity to study and apply deep ensemble techniques in the deep learning community. Some mission-critical applications utilize a large number of deep neural networks to form deep ensembles to achieve desired accuracy and resilience, which introduces high time and space costs for ensemble execution. However, it still remains a critical challenge whether a small subset of the entire deep ensemble can achieve the same or better generalizability and how to effectively identify these small deep ensembles for improving the space and time efficiency of ensemble execution. This article presents a novel deep ensemble pruning approach, which can efficiently identify smaller deep ensembles and provide higher ensemble accuracy than the entire deep ensemble of a large number of member networks. Our hierarchical ensemble pruning approach (HQ) leverages three novel ensemble pruning techniques. First, we show that the focal ensemble diversity metrics can accurately capture the complementary capacity of the member networks of an ensemble team, which can guide ensemble pruning. Second, we design a focal ensemble diversity based hierarchical pruning approach, which will iteratively find high quality deep ensembles with low cost and high accuracy. Third, we develop a focal diversity consensus method to integrate multiple focal diversity metrics to refine ensemble pruning results, where smaller deep ensembles can be effectively identified to offer high accuracy, high robustness and high ensemble execution efficiency. Evaluated using popular benchmark datasets, we demonstrate that the proposed hierarchical ensemble pruning approach can effectively identify high quality deep ensembles with better classification generalizability while being more time and space efficient in ensemble decision making. We have released the source codes on GitHub at https://github.com/git-disl/HQ-Ensemble .

Funder

NSF CISE

IBM Faculty Award, and a CISCO Edge AI

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3