Adaptive Task Allocation and Scheduling on NoC-based Multicore Platforms with Multitasking Processors

Author:

Paul Suraj1,Chatterjee Navonil2,Ghosal Prasun1ORCID,Diguet Jean-Philippe3

Affiliation:

1. Indian Institute of Engineering Science and Technology, Shibpur, India

2. Université Bretagne Sud, Lab-STICC, France

3. CNRS, Lab-STICC, France

Abstract

The application workloads in modern multicore platforms are becoming increasingly dynamic. It becomes challenging when multiple applications need to be executed in parallel in such systems. Mapping and scheduling of these applications are critical for system performance and energy consumption, especially in Network-on-Chip– (NoC) based multicore systems. These systems with multitasking processors offer a better opportunity for parallel application execution. Mapping solutions generated at design time may be inappropriate for dynamic workloads. To improve the utilization of the underlying multicore platform and cope with the dynamism of application workload, often task allocation is carried out dynamically. This article presents a hybrid task allocation and scheduling strategy that exploits the design-time results at runtime. By considering the multitasking capability of the processors, communication energy, and timing characteristics of the tasks, different allocation options are obtained at design time. During runtime, based on the availability of the platform resources and application requirements, the design-time allocations are adapted for mapping and scheduling of tasks, which result in improved runtime performance. Experimental results demonstrate that the proposed approach achieves an on average 11.5%, 22.3%, 28.6%, and 34.6% reduction in communication energy consumption as compared to CAM [18], DEAMS [4], TSMM [38], and CPNN [32], respectively, for NoC-based multicore platforms with multitasking processors. Also, the deadline satisfaction of the tasks of allocated applications improves on an average by 32.8% when compared with the state-of-the-art dynamic resource allocation approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference39 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3