Ranking and Selection

Author:

Görder Bjürn1,Kolonko Michael1

Affiliation:

1. Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Abstract

We introduce a new sampling scheme for selecting the best alternative out of a given set of systems that are evaluated with respect to their expected performances. We assume that the systems are simulated on a computer and that a joint observation of all systems has a multivariate normal distribution with unknown mean and unknown covariance matrix. In particular, the observations of the systems may be stochastically dependent as is the case if common random numbers are used for simulation. In each iteration of the algorithm, we allocate a fixed budget of simulation runs to the alternatives. We use a Bayesian set-up with a noninformative prior distribution and derive a new closed-form approximation for the posterior distributions that allows provision of a lower bound for the posterior probability of a correct selection (PCS). Iterations are continued until this lower bound is greater than 1−α for a given α. We also introduce a new allocation strategy that allocates the available budget according to posterior error probabilities. Our procedure needs no additional prior parameters and can cope with different types of ranking and selection tasks. Our numerical experiments show that our strategy is superior to other procedures from the literature, namely, KN ++ and P luck . In all of our test scenarios, these procedures needed more observation and/or had an empirical PCS below the required 1−α. Our procedure always had its empirical PCS above 1−α, underlining the practicability of our approximation of the posterior distribution.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3