ProposalVLAD with Proposal-Intra Exploring for Temporal Action Proposal Generation

Author:

Xing Kai1ORCID,Li Tao1ORCID,Wang Xuanhan1ORCID

Affiliation:

1. University of Electronic Science and Technology of China, Sichuan Province, China

Abstract

Temporal action proposal generation aims to localize temporal segments of human activities in videos. Current boundary-based proposal generation methods can generate proposals with precise boundary but often suffer from the inferior quality of confidence scores used for proposal retrieving. In this article, we propose an effective and end-to-end action proposal generation method, named ProposalVLAD, with Proposal-Intra Exploring Network (PVPI-Net). We first propose a ProposalVLAD module to dynamically generate global features of the entire video, then we combine the global features and proposal local features to generate the final feature representations for all candidate proposals. Then, we design a novel Proposal-Intra Loss function (PI-Loss) to generate more reliable proposal confidence scores. Extensive experiments on large-scale and challenging datasets demonstrate the effectiveness of our proposed method. Experimental results show that our PVPI-Net achieves significant improvements on two benchmark datasets (i.e., THUMOS’14 and ActivityNet-1.3) and sets new records for temporal action detection task.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference52 articles.

1. Nayyer Aafaq, Naveed Akhtar, Wei Liu, Syed Zulqarnain Gilani, and Ajmal Mian. 2019. Spatio-temporal dynamics and semantic attribute enriched visual encoding for video captioning. In Proceedings of the CVPR. 12487–12496.

2. Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and Juan Carlos Niebles. 2017. SST: Single-stream temporal action proposals. In Proceedings of the CVPR. 2911–2920.

3. Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. 2015. Activitynet: A large-scale video benchmark for human activity understanding. In Proceedings of the CVPR. 961–970.

4. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

5. Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia Deng, and Rahul Sukthankar. 2018. Rethinking the faster R-CNN architecture for temporal action localization. In Proceedings of the CVPR. 1130–1139.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3