Upgrading transport protocols using untrusted mobile code

Author:

Patel Parveen1,Whitaker Andrew2,Wetherall David2,Lepreau Jay1,Stack Tim1

Affiliation:

1. University of Utah, Salt Lake City, UT

2. University of Washington, Seattle, WA

Abstract

In this paper, we present STP, a system in which communicating end hosts use untrusted mobile code to remotely upgrade each other with the transport protocols that they use to communicate. New transport protocols are written in a type-safe version of C, distributed out-of-band, and run in-kernel. Communicating peers select a transport protocol to use as part of a TCP-like connection setup handshake that is backwards-compatible with TCP and incurs minimum connection setup latency. New transports can be invoked by unmodified applications. By providing a late binding of protocols to hosts, STP removes many of the delays and constraints that are otherwise commonplace when upgrading the transport protocols deployed on the Internet. STP is simultaneously able to provide a high level of security and performance. It allows each host to protect itself from untrusted transport code and to ensure that this code does not harm other network users by sending significantly faster than a compliant TCP. It runs untrusted code with low enough overhead that new transport protocols can sustain near gigabit rates on commodity hardware. We believe that these properties, plus compatibility with existing applications and transports, complete the features that are needed to make STP useful in practice.

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Core QUIC: Enabling Dynamic, Implementation-Agnostic Protocol Extensions;2024 IFIP Networking Conference (IFIP Networking);2024-06-03

2. A Pragmatic and Realistic Approach for Providing Adapted Transport Services for All Applications;2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD);2022-11-02

3. xBGP;Proceedings of the 19th ACM Workshop on Hot Topics in Networks;2020-11-04

4. Beyond socket options: Towards fully extensible Linux transport stacks;Computer Communications;2020-10

5. Pluginizing QUIC;Proceedings of the ACM Special Interest Group on Data Communication;2019-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3