Novel online profiling for virtual machines

Author:

Namjoshi Manjiri A.1,Kulkarni Prasad A.1

Affiliation:

1. University of Kansas, Lawrence, KS, USA

Abstract

Application profiling is a popular technique to improve program performance based on its behavior. Offline profiling, although beneficial for several applications, fails in cases where prior program runs may not be feasible, or if changes in input cause the profile to not match the behavior of the actual program run. Managed languages, like Java and C\#, provide a unique opportunity to overcome the drawbacks of offline profiling by generating the profile information online during the current program run. Indeed, online profiling is extensively used in current VMs, especially during selective compilation to improve program startup performance, as well as during other feedback-directed optimizations. In this paper we illustrate the drawbacks of the current reactive mechanism of online profiling during selective compilation. Current VM profiling mechanisms are slow -- thereby delaying associated transformations, and estimate future behavior based on the program's immediate past -- leading to potential misspeculation that limit the benefits of compilation. We show that these drawbacks produce an average performance loss of over 14.5% on our set of benchmark programs, over an ideal offline approach that accurately compiles the hot methods early. We then propose and evaluate the potential of a novel strategy to achieve similar performance benefits with an online profiling approach. Our new online profiling strategy uses early determination of loop iteration bounds to predict future method hotness. We explore and present promising results on the potential, feasibility, and other issues involved for the successful implementation of this approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3