Knowledge-based Visual Question Answering about Named Entities

Author:

Lerner Paul1

Affiliation:

1. Université Paris-Saclay, CNRS, LISN, France

Abstract

This thesis is positioned at the intersection of several research fields, Natural Language Processing, Information Retrieval (IR) and Computer Vision, which have unified around representation learning and pre-training methods. We have defined and studied a new multimodal task: Knowledge-based Visual Question Answering about Named Entities (KVQAE). We were particularly interested in cross-modal interactions and different ways of representing named entities. We also focused on data used to train and, more importantly, evaluate Question Answering systems through different metrics. We annotated a dataset for this purpose, the first in KVQAE comprising various types of entities. We also defined an experimental framework for dealing with KVQAE in two stages through an unstructured knowledge base and identified IR as the main bottleneck of KVQAE, especially for questions about non-person entities. To improve the IR stage, we studied different multimodal fusion methods, which are pre-trained through an original task: the Multimodal Inverse Cloze Task. We found that these models leveraged a cross-modal interaction that we had not originally considered, and which may address the heterogeneity of visual representations of named entities. These results were strengthened by a study of the CLIP model, which allows this cross-modal interaction to be modeled directly. Awarded by : Université Paris-Saclay, Orsay, France on 8 November 2023. Supervised by : Olivier Ferret and Camille Guinaudeau. Available at : https://www.theses.fr/s247993.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3