Automated Generation of Counterterrorism Policies Using Multiexpert Input

Author:

Sawant Anshul1,Dickerson John P.2,Hajiaghayi Mohammad T.1,Subrahmanian V. S.1

Affiliation:

1. University of Maryland, MD

2. Carnegie Mellon University, Pittsburgh, PA

Abstract

The use of game theory to model conflict has been studied by several researchers, spearheaded by Schelling. Most of these efforts assume a single payoff matrix that captures players’ utilities under different assumptions about what the players will do. Our experience in counterterrorism applications is that experts disagree on these payoffs. We leverage Shapley’s notion of vector equilibria, which formulates games where there are multiple payoff matrices, but note that they are very hard to compute in practice. To effectively enumerate large numbers of equilibria with payoffs provided by multiple experts, we propose a novel combination of vector payoffs and well-supported ϵ-approximate equilibria. We develop bounds related to computation of these equilibria for some special cases and give a quasipolynomial time approximation scheme (QPTAS) for the general case when the number of players is small (which is true in many real-world applications). Leveraging this QPTAS, we give efficient algorithms to find such equilibria and experimental results showing that they work well on simulated data. We then built a policy recommendation engine based on vector equilibria, called PREVE . We use PREVE to model the terrorist group Lashkar-e-Taiba (LeT), responsible for the 2008 Mumbai attacks, as a five-player game. Specifically, we apply it to three payoff matrices provided by experts in India--Pakistan relations, analyze the equilibria generated by PREVE, and suggest counterterrorism policies that may reduce attacks by LeT. We briefly discuss these results and identify their strengths and weaknesses from a policy point of view.

Funder

Defense Advanced Research Projects Agency

Office of Naval Research

American Society for Engineering Education

Army Research Office

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3