Browsing on small displays by transforming Web pages into hierarchically structured subpages

Author:

Xiao Xiangye1,Luo Qiong1,Hong Dan1,Fu Hongbo1,Xie Xing2,Ma Wei-Ying2

Affiliation:

1. Hong Kong University of Science and Technology, Kowloon, Hong Kong

2. Microsoft Research Asia, Beijing, P.R.C.

Abstract

We propose a new Web page transformation method to facilitate Web browsing on handheld devices such as Personal Digital Assistants (PDAs). In our approach, an original Web page that does not fit on the screen is transformed into a set of subpages, each of which fits on the screen. This transformation is done through slicing the original page into page blocks iteratively, with several factors considered. These factors include the size of the screen, the size of each page block, the number of blocks in each transformed page, the depth of the tree hierarchy that the transformed pages form, as well as the semantic coherence between blocks. We call the tree hierarchy of the transformed pages an SP-tree. In an SP-tree, an internal node consists of a textually enhanced thumbnail image with hyperlinks, and a leaf node is a block extracted from a subpage of the original Web page. We adaptively adjust the fanout and the height of the SP-tree so that each thumbnail image is clear enough for users to read, while at the same time, the number of clicks needed to reach a leaf page is few. Through this transformation algorithm, we preserve the contextual information in the original Web page and reduce scrolling. We have implemented this transformation module on a proxy server and have conducted usability studies on its performance. Our system achieved a shorter task completion time compared with that of transformations from the Opera browser in nine of ten tasks. The average improvement on familiar pages was 44%. The average improvement on unfamiliar pages was 37%. Subjective responses were positive.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3