Too Stiff, Too Strong, Too Smart

Author:

Xie Kaixiang1ORCID,Xu Pei2ORCID,Andrews Sheldon3ORCID,Zordan Victor B.4ORCID,Kry Paul G.1ORCID

Affiliation:

1. McGill University, Canada

2. Clemson University, USA

3. École de technologie supérieure, Canada and Roblox, USA

4. Roblox, USA and Clemson University, USA

Abstract

Deep reinforcement learning (DRL) methods have demonstrated impressive results for skilled motion synthesis of physically based characters, and while these methods perform well in terms of tracking reference motions or achieving complex tasks, several concerns arise when evaluating the naturalness of the motion. In this paper, we conduct a preliminary study of specific quantitative metrics for measuring the naturalness of motion produced by DRL control policies beyond their visual appearance. Namely, we propose to study the stiffness of the control policy, in anticipation that it will influence how the character behaves in the presence of external perturbation. Second, we establish two baselines for strength that allow evaluating the use of joint torques in comparison to human performance. Third, we propose the study of variability to reveal the unnatural precision of control policies and how they compare to real human motion. In sum, we aim to establish repeatable measures to assess the naturalness of control policies produced by DRL methods, and we present a set of comparisons from state-of-the-art systems. Finally, we propose simple modifications to improve realism on these axes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Compliant Control for Legged Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Research on Common Structure of Motion Data;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3