JIT instrumentation

Author:

Olszewski Marek1,Mierle Keir1,Czajkowski Adam1,Brown Angela Demke1

Affiliation:

1. University of Toronto, Toronto, Ontario, Canada

Abstract

As modern operating systems become more complex, understanding their inner workings is increasingly difficult. Dynamic kernel instrumentation is a well established method of obtaining insight into the workings of an OS, with applications including debugging, profiling and monitoring, and security auditing. To date, all dynamic instrumentation systems for operating systems follow the probe-based instrumentation paradigm. While efficient on fixed-length instruction set architectures, probes are extremely expensive on variable-length ISAs such as the popular Intel x86 and AMD x86-64. We propose using just-in-time (JIT) instrumentation to overcome this problem. While common in user space, JIT instrumentation has not until now been attempted in kernel space. In this work, we show the feasibility and desirability of kernel-based JIT instrumentation for operating systems with our novel prototype, implemented as a Linux kernel module. The prototype is fully SMP capable. We evaluate our prototype against the popular Kprobes Linux instrumentation tool. Our prototype outperforms Kprobes, at both micro and macro levels, by orders of magnitude when applying medium- and fine-grained instrumentation.

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Debugopt: Debugging fully optimized natively compiled programs using multistage instrumentation;Science of Computer Programming;2019-01

2. PAST: accurate instrumentation on fully optimized program;Software: Practice and Experience;2015-01-16

3. A Novel Online Measure of Cache Utility Efficiency in Chip Multiprocessor;2012 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science;2012-10

4. Comprehensive kernel instrumentation via dynamic binary translation;ACM SIGPLAN Notices;2012-06

5. Comprehensive kernel instrumentation via dynamic binary translation;ACM SIGARCH Computer Architecture News;2012-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3