Abstract
Real production applications ranging from enterprise applications to large e-commerce sites share a crucial but seldom-noted characteristic: The relative frequencies of transaction types in their workloads are
nonstationary
, i.e., the transaction mix changes over time. Accurately predicting application-level performance in business-critical production applications is an increasingly important problem. However, transaction mix nonstationarity casts doubt on the practical usefulness of prediction methods that ignore this phenomenon.
This paper demonstrates that transaction mix nonstationarity
enables
a new approach to predicting application-level performance as a function of transaction mix. We exploit nonstationarity to circumvent the need for invasive instrumentation and controlled benchmarking during model calibration; our approach relies solely on lightweight passive measurements that are routinely collected in today's production environments. We evaluate predictive accuracy on two real business-critical production applications. The accuracy of our response time predictions ranges from 10% to 16% on these applications, and our models generalize well to workloads very different from those used for calibration.
We apply our technique to the challenging problem of predicting the impact of application consolidation on transaction response times. We calibrate models of two testbed applications running on dedicated machines, then use the models to predict their performance when they run together on a shared machine and serve very different workloads. Our predictions are accurate to within 4% to 14%. Existing approaches to consolidation decision support predict post-consolidation
resource utilizations
. Our method allows
application-level performance
to guide consolidation decisions.
Publisher
Association for Computing Machinery (ACM)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献