Exploiting nonstationarity for performance prediction

Author:

Stewart Christopher1,Kelly Terence2,Zhang Alex2

Affiliation:

1. U. Rochester

2. Hewlett-Packard Labs

Abstract

Real production applications ranging from enterprise applications to large e-commerce sites share a crucial but seldom-noted characteristic: The relative frequencies of transaction types in their workloads are nonstationary , i.e., the transaction mix changes over time. Accurately predicting application-level performance in business-critical production applications is an increasingly important problem. However, transaction mix nonstationarity casts doubt on the practical usefulness of prediction methods that ignore this phenomenon. This paper demonstrates that transaction mix nonstationarity enables a new approach to predicting application-level performance as a function of transaction mix. We exploit nonstationarity to circumvent the need for invasive instrumentation and controlled benchmarking during model calibration; our approach relies solely on lightweight passive measurements that are routinely collected in today's production environments. We evaluate predictive accuracy on two real business-critical production applications. The accuracy of our response time predictions ranges from 10% to 16% on these applications, and our models generalize well to workloads very different from those used for calibration. We apply our technique to the challenging problem of predicting the impact of application consolidation on transaction response times. We calibrate models of two testbed applications running on dedicated machines, then use the models to predict their performance when they run together on a shared machine and serve very different workloads. Our predictions are accurate to within 4% to 14%. Existing approaches to consolidation decision support predict post-consolidation resource utilizations . Our method allows application-level performance to guide consolidation decisions.

Publisher

Association for Computing Machinery (ACM)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A cost-driven online auto-scaling algorithm for web applications in cloud environments;Knowledge-Based Systems;2022-05

2. Predicting Performance Anomalies in Software Systems at Run-time;ACM Transactions on Software Engineering and Methodology;2021-07-31

3. SARDE;ACM Transactions on Autonomous and Adaptive Systems;2021-06

4. Resource Demand Estimation;Systems Benchmarking;2020

5. Log4Perf: suggesting and updating logging locations for web-based systems’ performance monitoring;Empirical Software Engineering;2019-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3