A Diffusion Model for POI Recommendation

Author:

Qin Yifang1ORCID,Wu Hongjun2ORCID,Ju Wei1ORCID,Luo Xiao3ORCID,Zhang Ming1ORCID

Affiliation:

1. National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China

2. School of EECS, Peking University, Beijing, China

3. Department of Computer Science, University of California, Los Angeles, USA

Abstract

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user’s next destination. Previous works on POI recommendation have laid focus on modeling the user’s spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users’ previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model’s performance in many situations. Additionally, incorporating sequential information into the user’s spatial preference remains a challenge. In this article, we propose Diff-POI : a Diffu sion-based model that samples the user’s spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user’s visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user’s spatial visiting trends. We leverage the diffusion process and its reverse form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference67 articles.

1. Reverse-time diffusion equation models

2. Structural Deep Clustering Network

3. Chen Cheng, Haiqin Yang, Michael R. Lyu, and Irwin King. 2013. Where you like to go next: Successive point-of-interest recommendation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence.

4. Diffusion models beat GANs on image synthesis;Dhariwal Prafulla;Advances in Neural Information Processing Systems,2021

5. DeepMove

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3