Benchmarking Instance-Centric Counterfactual Algorithms for XAI: From White Box to Black Box

Author:

Moreira Catarina12ORCID,Chou Yu-Liang3ORCID,Hsieh Chihcheng3ORCID,Ouyang Chun3ORCID,Pereira João2ORCID,Jorge Joaquim2ORCID

Affiliation:

1. Human Technology Institute, University of Technology Sydney, Broadway, Australia

2. GI, Instituto de Engenharia de Sistemas e Computadores Investigacao e Desenvolvimento em Lisboa, Lisboa, Portugal

3. School of Information Systems, Queensland University of Technology, Brisbane, Australia

Abstract

This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: a decision tree (fully transparent, interpretable, white-box model), a random forest (semi-interpretable, grey-box model), and a neural network (fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in 25 different datasets. Our findings indicate that: (1) Different machine learning models have little impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A counterfactual inspection analysis is strongly recommended to ensure a robust examination of counterfactual explanations and the potential identification of biases.

Publisher

Association for Computing Machinery (ACM)

Reference94 articles.

1. 2018. GrowingSpheres. https://github.com/thibaultlaugel/growingspheres

2. 2019. ALIBI. https://github.com/SeldonIO/alibi

3. 2020. DICE. https://github.com/interpretml/DiCE

4. Kiana Alikhademi Brianna Richardson Emma Drobina and Juan E. Gilbert. 2021. Can Explainable AI Explain Unfairness? A Framework for Evaluating Explainable AI. arXiv:2106.07483  [cs.CY]

5. Towards Risk-Free Trustworthy Artificial Intelligence: Significance and Requirements;Alzubaidi Laith;International Journal of Intelligent Systems,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3