1. A General Framework for Counterfactual Learning-to-Rank
2. Causal embeddings for recommendation
3. Jiawei Chen , Hande Dong , Yang Qiu , Xiangnan He , Xin Xin , Liang Chen , Guli Lin , and Keping Yang . 2021. AutoDebias: Learning to Debias for Recommendation . Association for Computing Machinery , New York, NY, USA , 21--30. https://doi.org/10.1145/3404835.3462919 10.1145/3404835.3462919 Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin, and Keping Yang. 2021. AutoDebias: Learning to Debias for Recommendation. Association for Computing Machinery, New York, NY, USA, 21--30. https://doi.org/10.1145/3404835.3462919
4. Jiawei Chen , Hande Dong , Xiang Wang , Fuli Feng , Meng Wang , and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. CoRR , Vol. abs/ 2010 .03240 ( 2020 ). showeprint[arXiv]2010.03240 https://arxiv.org/abs/2010.03240 Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. CoRR, Vol. abs/2010.03240 (2020). showeprint[arXiv]2010.03240 https://arxiv.org/abs/2010.03240
5. Yu Cheng , Duo Wang , Pan Zhou , and Tao Zhang . 2017. A Survey of Model Compression and Acceleration for Deep Neural Networks. CoRR , Vol. abs/ 1710 .09282 ( 2017 ). showeprint[arXiv]1710.09282 http://arxiv.org/abs/1710.09282 Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey of Model Compression and Acceleration for Deep Neural Networks. CoRR, Vol. abs/1710.09282 (2017). showeprint[arXiv]1710.09282 http://arxiv.org/abs/1710.09282