Strategic Classification from Revealed Preferences
Author:
Affiliation:
1. University of Pennsylvania, Philadelphia, PA, USA
2. Microsoft Research, New York, NY, USA
Funder
NSF
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3219166.3219193
Reference24 articles.
1. Kareem Amin Rachel Cummings Lili Dworkin Michael Kearns and Aaron Roth. 2015. Online Learning and Profit Maximization from Revealed Preferences. AAAI. 770--776. Kareem Amin Rachel Cummings Lili Dworkin Michael Kearns and Aaron Roth. 2015. Online Learning and Profit Maximization from Revealed Preferences. AAAI. 770--776.
2. Commitment Without Regrets
3. Maria-Florina Balcan Amit Daniely Ruta Mehta Ruth Urner and Vijay V Vazirani. 2014. Learning economic parameters from revealed preferences International Conference on Web and Internet Economics. Springer 338--353. Maria-Florina Balcan Amit Daniely Ruta Mehta Ruth Urner and Vijay V Vazirani. 2014. Learning economic parameters from revealed preferences International Conference on Web and Internet Economics. Springer 338--353.
4. Learning from revealed preference
5. Aharon Ben-Tal and Arkadi Nemirovski. 2001. Lectures on modern convex optimization: analysis algorithms and engineering applications. SIAM. Aharon Ben-Tal and Arkadi Nemirovski. 2001. Lectures on modern convex optimization: analysis algorithms and engineering applications. SIAM.
Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Contextual Dynamic Pricing with Strategic Buyers;Journal of the American Statistical Association;2024-09-03
2. Learning to Persuade on the Fly: Robustness Against Ignorance;Operations Research;2024-06-18
3. Recourse for Reclamation: Chatting with Generative Language Models;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-02
4. Treatment Allocation with Strategic Agents;Management Science;2024-03-27
5. Strategic ML: How to Learn With Data That 'Behaves';Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3