Applying data mining to intrusion detection

Author:

Lee Wenke1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

Intrusion detection is an essential component of the layered computer security mechanisms. It requires accurate and efficient models for analyzing a large amount of system and network audit data. This paper is an overview of our research in applying data mining techniques to build intrusion detection models. We describe a framework for mining patterns from system and network audit data, and constructing features according to analysis of intrusion patterns. We discuss approaches for improving the run-time efficiency as well as the credibility of detection models. We report the ideas, algorithms, and prototype systems we have developed, and discuss open research problems.

Publisher

Association for Computing Machinery (ACM)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Association Rule Mining in Preventing Cyberattacks;Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section;2021-12-01

2. Experimental Cyber Attack Detection Framework;Electronics;2021-07-14

3. Anomaly Detection Algorithm Based on Cluster of Entropy;Computer Supported Cooperative Work and Social Computing;2018-12-11

4. Network malware classification comparison using DPI and flow packet headers;Journal of Computer Virology and Hacking Techniques;2015-07-29

5. Research on Network Intrusion Detection Based on Data Mining Technology;Applied Mechanics and Materials;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3