ReShader: View-Dependent Highlights for Single Image View-Synthesis

Author:

Paliwal Avinash1ORCID,Nguyen Brandon G.1,Tsarov Andrii2,Kalantari Nima Khademi1

Affiliation:

1. Texas A&M University, USA

2. Leia Inc., USA

Abstract

In recent years, novel view synthesis from a single image has seen significant progress thanks to the rapid advancements in 3D scene representation and image inpainting techniques. While the current approaches are able to synthesize geometrically consistent novel views, they often do not handle the view-dependent effects properly. Specifically, the highlights in their synthesized images usually appear to be glued to the surfaces, making the novel views unrealistic. To address this major problem, we make a key observation that the process of synthesizing novel views requires changing the shading of the pixels based on the novel camera, and moving them to appropriate locations. Therefore, we propose to split the view synthesis process into two independent tasks of pixel reshading and relocation. During the reshading process, we take the single image as the input and adjust its shading based on the novel camera. This reshaded image is then used as the input to an existing view synthesis method to relocate the pixels and produce the final novel view image. We propose to use a neural network to perform reshading and generate a large set of synthetic input-reshaded pairs to train our network. We demonstrate that our approach produces plausible novel view images with realistic moving highlights on a variety of real world scenes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference56 articles.

1. Sai Bi , Zexiang Xu , Pratul Srinivasan , Ben Mildenhall , Kalyan Sunkavalli , Miloš Hašan , Yannick Hold-Geoffroy , David Kriegman , and Ravi Ramamoorthi . 2020a. Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 ( 2020 ). Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020a. Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020).

2. Sai Bi , Zexiang Xu , Kalyan Sunkavalli , Miloš Hašan , Yannick Hold-Geoffroy , David Kriegman , and Ravi Ramamoorthi . 2020 b. Deep reflectance volumes: Relightable reconstructions from multi-view photometric images. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020 , Proceedings, Part III 16 . Springer, 294--311. Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020b. Deep reflectance volumes: Relightable reconstructions from multi-view photometric images. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part III 16. Springer, 294--311.

3. Benedikt Bitterli. 2014. Tungsten Renderer. https://github.com/tunabrain/tungsten. Benedikt Bitterli. 2014. Tungsten Renderer. https://github.com/tunabrain/tungsten.

4. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

5. A. Blake . 1985 . Specular Stereo. In Proceedings of the 9th International Joint Conference on Artificial Intelligence - Volume 2 (Los Angeles, California) (IJCAI'85). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 973--976. A. Blake. 1985. Specular Stereo. In Proceedings of the 9th International Joint Conference on Artificial Intelligence - Volume 2 (Los Angeles, California) (IJCAI'85). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 973--976.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3