A Review of User Interface Design for Interactive Machine Learning

Author:

Dudley John J.1ORCID,Kristensson Per Ola1

Affiliation:

1. University of Cambridge, United Kingdom

Abstract

Interactive Machine Learning (IML) seeks to complement human perception and intelligence by tightly integrating these strengths with the computational power and speed of computers. The interactive process is designed to involve input from the user but does not require the background knowledge or experience that might be necessary to work with more traditional machine learning techniques. Under the IML process, non-experts can apply their domain knowledge and insight over otherwise unwieldy datasets to find patterns of interest or develop complex data-driven applications. This process is co-adaptive in nature and relies on careful management of the interaction between human and machine. User interface design is fundamental to the success of this approach, yet there is a lack of consolidated principles on how such an interface should be implemented. This article presents a detailed review and characterisation of Interactive Machine Learning from an interactive systems perspective. We propose and describe a structural and behavioural model of a generalised IML system and identify solution principles for building effective interfaces for IML. Where possible, these emergent solution principles are contextualised by reference to the broader human-computer interaction literature. Finally, we identify strands of user interface research key to unlocking more efficient and productive non-expert interactive machine learning applications.

Funder

Google Faculty research award and EPSRC

Trimble Fund

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3