Artificial life and cellular automata based automated test case generator

Author:

Bhasin Harsh1

Affiliation:

1. Delhi technological University, New Delhi, India

Abstract

Manual test data generation is carried out by using the ability of neurons to recognize patterns. The nervous system and the brain coordinate to generate test cases, which are capable of finding potential faults. Automated test data generators lack the ability to produce efficient test cases because they do not imitate natural processes. This paper proposes using Artificial Life based systems for generating test cases. Cellular Automata and Langton's loop have been used to accomplish the above task. Cellular Automata are parallel distributed systems capable of reproducing using self generated patterns. These fascinating techniques have been amalgamated with standard test data generation techniques to give rise to a methodology, which generates test cases for white box testing. Langton's Loops have been used to generate test cases for Black Box Testing. The approach has been verified on a set of 20 programs. The programs have been selected on the basis of their Lines of Code and utility. The results obtained have been verified using Average Probability of Fault Detection. This paper also proposes a new framework capable of crafting test cases taking into account the oracle cost.

Publisher

Association for Computing Machinery (ACM)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Literature Survey of Applications of Meta-heuristic Techniques in Software Testing;Advances in Intelligent Systems and Computing;2018-06-13

2. Neural Network-Based Automated Priority Assigner;Advances in Intelligent Systems and Computing;2015-09-11

3. Toward a secured automated test-data generator using S-Box;ACM SIGSOFT Software Engineering Notes;2014-09-17

4. Cost-priority cognizant regression testing;ACM SIGSOFT Software Engineering Notes;2014-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3