Towards Improving the Security of IoT and CPS Devices: An AI Approach

Author:

Albasir AbdurhmanORCID,Naik KshirasagarORCID,Manzano Ricardo1ORCID

Affiliation:

1. University of Waterloo

Abstract

Detecting anomalously behaving devices in security-and-safety-critical applications is an important challenge. This paper presents an off-device methodology for detecting the anomalous behavior of devices considering their power consumption data. The methodology takes advantage of the fact that every action on-board a device will be reflected in its power trace. This argument makes it inevitable for anomalously behaving device to go undetected. We transform the device’s 1-D instantaneous power consumption signals to 2-D time-frequency images using Constant Q Transformation (CQT). The CQT images capture valuable information about the tasks performed on-board a device. By applying Histograms of Oriented Gradients (HOG) on the CQT images, we extract robust features that preserve the edges of time-frequency structures and capture the directionality of the edge information. Consequently, we transform the anomaly detection problem into an image classification problem. We train a Convolutional Neural Network on the HOG images to classify the power signals to detect anomaly. We validated the methodology using a wide spectrum of emulated malware scenarios, five real malware applications from the well-known Drebin dataset, DDOS attacks, cryptomining malware, and faulty CPU cores. Across 18 datasets, our methodology demonstrated detection performance of ∼ 88% accuracy and 85% F-Score, resulting in improvements of 9% - 17% over other methods using power signals.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Safety Research,Information Systems,Software

Reference86 articles.

1. A. Albasir , R. S.  R. James , K. Naik , and A. Nayak . 2018. Using Deep Learning to Classify Power Consumption Signals of Wireless Devices: An Application to Cybersecurity . In 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP). A. Albasir, R. S. R. James, K. Naik, and A. Nayak. 2018. Using Deep Learning to Classify Power Consumption Signals of Wireless Devices: An Application to Cybersecurity. In 2018 IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP).

2. A. Alnasser H. Sun and J. Jiang. 2019. Cyber security challenges and solutions for V2X communications: A survey. Computer Networks (2019). A. Alnasser H. Sun and J. Jiang. 2019. Cyber security challenges and solutions for V2X communications: A survey. Computer Networks (2019).

3. A. Antonini , F. Maggi , and S. Zanero . 2014. A Practical Attack Against a KNX-based Building Automation System .. In 2nd International Symposium for ICS & SCADA Cyber Security Research 2014 (ICS-CSR 2014 ). A. Antonini, F. Maggi, and S. Zanero. 2014. A Practical Attack Against a KNX-based Building Automation System.. In 2nd International Symposium for ICS & SCADA Cyber Security Research 2014 (ICS-CSR 2014).

4. Using Behavioral Profiles to Detect Software Flaws in Network Servers

5. D. Arp , M. Spreitzenbarth , M. Hubner , H. Gascon , K. Rieck , and C. Siemens . 2014 . DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket.. In Ndss, Vol.  14. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. 2014. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket.. In Ndss, Vol.  14.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3