Affiliation:
1. School of EECS, Washington State University, USA
Abstract
Safe deployment of time-series classifiers for real-world applications relies on the ability to detect the data that is not generated from the same distribution as training data. This task is referred to as out-of-distribution (OOD) detection. We consider the novel problem of OOD detection for the time-series domain. We discuss the unique challenges posed by time-series data and explain why prior methods from the image domain will perform poorly. Motivated by these challenges, this article proposes a novel
Seasonal Ratio Scoring (SRS)
approach. SRS consists of three key algorithmic steps. First, each input is decomposed into class-wise semantic component and remainder. Second, this decomposition is employed to estimate the class-wise conditional likelihoods of the input and remainder using deep generative models. The seasonal ratio score is computed from these estimates. Third, a threshold interval is identified from the in-distribution data to detect OOD examples. Experiments on diverse real-world benchmarks demonstrate that the SRS method is well-suited for time-series OOD detection when compared to baseline methods.
Funder
AgAID AI Institute for Agriculture Decision Support
National Science Foundation and United States Department of Agriculture - National Institute of Food and Agriculture
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science