Effective Video Summarization by Extracting Parameter-Free Motion Attention

Author:

Han Tingting1ORCID,Zhou Quan2ORCID,Yu Jun3ORCID,Yu Zhou2ORCID,Zhang Jianhui2ORCID,Zhao Sicheng4ORCID

Affiliation:

1. College of Computer Science, Hangzhou Dianzi University, Hangzhou, China

2. Hangzhou Dianzi University, Hangzhou, China

3. Computer Science, Hangzhou Dianzi University, Hangzhou, China

4. Tsinghua University Beijing National Research Center for Information Science and Technology, Beijing, China

Abstract

Video summarization remains a challenging task despite increasing research efforts. Traditional methods focus solely on long-range temporal modeling of video frames, overlooking important local motion information that cannot be captured by frame-level video representations. In this article, we propose the Parameter-free Motion Attention Module (PMAM) to exploit the crucial motion clues potentially contained in adjacent video frames, using a multi-head attention architecture. The PMAM requires no additional training for model parameters, leading to an efficient and effective understanding of video dynamics. Moreover, we introduce the Multi-feature Motion Attention Network (MMAN), integrating the PMAM with local and global multi-head attention based on object-centric and scene-centric video representations. The synergistic combination of local motion information, extracted by the proposed PMAM, with long-range interactions modeled by the local and global multi-head attention mechanism, can significantly enhance the performance of video summarization. Extensive experimental results on the benchmark datasets, SumMe and TVSum, demonstrate that the proposed MMAN outperforms other state-of-the-art methods, resulting in remarkable performance gains.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference64 articles.

1. Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras. 2021. Combining global and local attention with positional encoding for video summarization. In Proceedings of the IEEE International Symposium on Multimedia. 226–234.

2. Sijia Cai, Wangmeng Zuo, Larry S. Davis, and Lei Zhang. 2018. Weakly-supervised video summarization using variational encoder-decoder and web prior. In Proceedings of the European Conference on Computer Vision. 184–200.

3. Weakly Supervised Video Summarization by Hierarchical Reinforcement Learning

4. VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method

5. ImageNet: A large-scale hierarchical image database

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3