Read Refresh Scheduling and Data Reallocation against Read Disturb in SSDs

Author:

Liao Jianwei1,Li Jun1,Zhao Mingwang1,Sha Zhibing1,Cai Zhigang1

Affiliation:

1. Southwest University of China, Beibei, Chongqing, China

Abstract

Read disturb is a circuit-level noise in flash-based Solid-State Drives (SSDs), induced by intensive read requests, which may result in unexpected read errors. The approach of read refresh (RR) is commonly adopted to mitigate its negative effects by unconditionally migrating all valid data pages in the RR block to another new block. However, routine RR operations greatly impact the I/O responsiveness of SSDs, because the processing on normal I/O requests must be blocked at the same time. To further reduce the negative effects of read refresh, this article proposes a read refresh scheduling and data reallocation method to deal with two primary issues with respect to an RR operation, including where to place data pages and when to trigger page migrations. Specifically, we first construct a data reallocation model to match the data pages in the RR block and the destination blocks for addressing the issue of where to place the data. The model considers not only the read hotness of pages in the RR block, but also the accumulated read counts of the destination blocks. Moreover, for addressing the issue of when to trigger data migrations, we build a timing decision model to determine the time points for completing page migrations by considering the factors of the intensity of I/Os and the disturb situation on the RR block. Through a series of simulation experiments based on several realistic disk traces, we illustrate that the proposed RR scheduling and data reallocation mechanism can noticeably reduce the read errors by more than 10.3% , on average, and the long-tail latency by between 43.9% and 64.0% at the 99.99th percentile, in contrast to state-of-the-art methods.

Funder

National Natural Science Foundation of China

Chongqing Graduate Research and Innovation Project

Chongqing Talent

Natural Science Foundation Project of CQ CSTC

Opening Project of State Key Laboratory for and Novel Software Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Retention Errors of 3D NAND Flash for Optimizing Data Placement;ACM Transactions on Design Automation of Electronic Systems;2024-06-21

2. Polling Sanitization to Balance I/O Latency and Data Security of High-density SSDs;ACM Transactions on Storage;2024-02-19

3. Read Disturb and Reliability: The Complete Story for 3D CT NAND Flash;2023 IEEE 12th Non-Volatile Memory Systems and Applications Symposium (NVMSA);2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3