The power of parameterization in coinductive proof

Author:

Hur Chung-Kil1,Neis Georg2,Dreyer Derek3,Vafeiadis Viktor4

Affiliation:

1. Microsoft Research, Cambridge, United Kingdom

2. MPI-SWS & Saarland University, Saarbruecken, Germany

3. MPI-SWS, Saarbruecken, Germany

4. MPI-SWS, Kaiserslautern, Germany

Abstract

Coinduction is one of the most basic concepts in computer science. It is therefore surprising that the commonly-known lattice-theoretic accounts of the principles underlying coinductive proofs are lacking in two key respects: they do not support compositional reasoning (i.e. breaking proofs into separate pieces that can be developed in isolation), and they do not support incremental reasoning (i.e. developing proofs interactively by starting from the goal and generalizing the coinduction hypothesis repeatedly as necessary). In this paper, we show how to support coinductive proofs that are both compositional and incremental, using a dead simple construction we call the parameterized greatest fixed point. The basic idea is to parameterize the greatest fixed point of interest over the accumulated knowledge of "the proof so far". While this idea has been proposed before, by Winskel in 1989 and by Moss in 2001, neither of the previous accounts suggests its general applicability to improving the state of the art in interactive coinductive proof. In addition to presenting the lattice-theoretic foundations of parameterized coinduction, demonstrating its utility on representative examples, and studying its composition with "up-to" techniques, we also explore its mechanization in proof assistants like Coq and Isabelle. Unlike traditional approaches to mechanizing coinduction (e.g. Coq's cofix), which employ syntactic "guardedness checking", parameterized coinduction offers a semantic account of guardedness. This leads to faster and more robust proof development, as we demonstrate using our new Coq library, Paco.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stuttering for Free;Proceedings of the ACM on Programming Languages;2023-10-16

2. Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning;Proceedings of the ACM on Programming Languages;2023-06-06

3. Up-to techniques for behavioural metrics via fibrations;Mathematical Structures in Computer Science;2023-04

4. Impredicative Observational Equality;Proceedings of the ACM on Programming Languages;2023-01-09

5. Choice Trees: Representing Nondeterministic, Recursive, and Impure Programs in Coq;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3