RLC: A Reinforcement Learning-Based Charging Algorithm for Mobile Devices
Author:
Affiliation:
1. Sichuan Normal University; State Key Laboratory of Networking and Switching Technology, China
2. University of Louisiana at Lafayette, USA
3. Sichuan University, China
4. Old Dominion University, USA
Abstract
Funder
National Natural Science Foundation of China
Open Foundation of State Key Laboratory of Networking and Switching Technology
Scientific Research Fund of Sichuan Provincial Education Department
Opening Project of Visual Computing and Virtual Reality Key Laboratory of Sichuan Province
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Link
https://dl.acm.org/doi/pdf/10.1145/3453682
Reference45 articles.
1. Tensorflow: A system for large-scale machine learning;Abadi Martín;OSDI,2016
2. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things
3. A survey of design techniques for system-level dynamic power management
4. A deep reinforcement learning-based on-demand charging algorithm for wireless rechargeable sensor networks
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Maximizing Coverage of Targets for WRSNs by Multiple Chargers Scheduling;IEEE Transactions on Mobile Computing;2024-10
2. On Wireless Charging for Mobile Sensors;IEEE Transactions on Green Communications and Networking;2024-09
3. Intelligent Trajectory Design and Charging Scheduling in Wireless Rechargeable Sensor Networks With Obstacles;IEEE Transactions on Mobile Computing;2024-09
4. Unveiling Efficient Partial Charging Schedules for Wireless Rechargeable Sensor Networks Using Novel Aquila Optimization Approach;Arabian Journal for Science and Engineering;2024-08-28
5. Counterfactual Reward Estimation for Credit Assignment in Multi-agent Deep Reinforcement Learning over Wireless Video Transmission;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3