Unsupervised Person Re-identification

Author:

Fan Hehe1,Zheng Liang2,Yan Chenggang3,Yang Yi2ORCID

Affiliation:

1. Institute of Information and Control, Hangzhou Dianzi University and Center for Artificial Intelligence, University of Technology Sydney, Ultimo, Sydney, NSW, Australia

2. Center for Artificial Intelligence, University of Technology Sydney, Ultimo, Sydney, NSW, Australia

3. Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

Abstract

The superiority of deeply learned pedestrian representations has been reported in very recent literature of person re-identification (re-ID). In this article, we consider the more pragmatic issue of learning a deep feature with no or only a few labels. We propose a progressive unsupervised learning (PUL) method to transfer pretrained deep representations to unseen domains. Our method is easy to implement and can be viewed as an effective baseline for unsupervised re-ID feature learning. Specifically, PUL iterates between (1) pedestrian clustering and (2) fine-tuning of the convolutional neural network (CNN) to improve the initialization model trained on the irrelevant labeled dataset. Since the clustering results can be very noisy, we add a selection operation between the clustering and fine-tuning. At the beginning, when the model is weak, CNN is fine-tuned on a small amount of reliable examples that locate near to cluster centroids in the feature space. As the model becomes stronger, in subsequent iterations, more images are being adaptively selected as CNN training samples. Progressively, pedestrian clustering and the CNN model are improved simultaneously until algorithm convergence. This process is naturally formulated as self-paced learning. We then point out promising directions that may lead to further improvement. Extensive experiments on three large-scale re-ID datasets demonstrate that PUL outputs discriminative features that improve the re-ID accuracy. Our code has been released at https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning.

Funder

Zhejiang Province Nature Science Foundation of China

111 Project

Cooperative Research Centres Programme

Data to Decisions CRC

National Nature Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 492 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3