Robust Containment Queries over Collections of Rational Parametric Curves via Generalized Winding Numbers

Author:

Spainhour Jacob1ORCID,Gunderman David2ORCID,Weiss Kenneth3ORCID

Affiliation:

1. University of Colorado Boulder, Boulder, United States of America

2. Indiana University School of Medicine, West Lafayette, United States of America

3. Lawrence Livermore National Laboratory, Livermore, United States of America

Abstract

Point containment queries for regions bound by watertight geometric surfaces, i.e., closed and without self-intersections, can be evaluated straightforwardly with a number of well-studied algorithms. When this assumption on domain geometry is not met, such methods are either unusable, or prone to misclassifications that can lead to cascading errors in downstream applications. More robust point classification schemes based on generalized winding numbers have been proposed, as they are indifferent to these imperfections. However, existing algorithms are limited to point clouds and collections of linear elements. We extend this methodology to encompass more general curved shapes with an algorithm that evaluates the winding number scalar field over unstructured collections of rational parametric curves. In particular, we evaluate the winding number for each curve independently, making the derived containment query robust to how the curves are arranged. We ensure geometric fidelity in our queries by treating each curve as equivalent to an adaptively constructed polyline that provably has the same generalized winding number at the point of interest. Our algorithm is numerically stable for points that are arbitrarily close to the model, and explicitly treats points that are coincident with curves. We demonstrate the improvements in computational performance granted by this method over conventional techniques as well as the robustness induced by its application.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3