On the lower degree intersections of two natural quadrics

Author:

Shene Ching-Kuang1,Johnstone John K.2

Affiliation:

1. Northern Michigan University

2. University of Alabama at Birmingham

Abstract

In general, two quadric surface intersect in a space quartic curve. However, the intersection frequently degenerates to a collection of plane curves. Degenerate cases are frequent in geometric/solid modeling because degeneracies are often required by design. Their detection is important because degenerate intersections can be computed more easily and allow simpler treatment of important problems. In this paper, we investigate this problem for natural quadrics. Algorithms are presented to detect and compute conic intersections and linear intersections. These methods reveal the relationship between the planes of the degenerate intersections and the quadrics. Using the theory developed in the paper, we present a new and simplified proof of a necessary and sufficient condition for conic intersection. Finally, we present a simple method for determining the types of conic in a degenerate intersection without actually computing the intersection, and an enumeration of all possible conic types. Since only elementary geometric routines such as line intersection are used, all of the above algorithms are intuitive and easily implementable.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference41 articles.

1. Automatic parameterization of rational curves and surfaces IV: algebraic space curves

2. BEREIS R. 1964. Darstellende Geometrie I. Akademie-Verlag Berlin. BEREIS R. 1964. Darstellende Geometrie I. Akademie-Verlag Berlin.

3. On cyclides in geometric modeling

4. DANDELIN G.P. 1822. M~moire sur quelques propri~t6s remarquables de la Focal Parabolique. Nouveaux Mdmoires de l'Academie Royale des Sciences et Belles-lettres de Bruxelles 2 171-202. DANDELIN G.P. 1822. M~moire sur quelques propri~t6s remarquables de la Focal Parabolique. Nouveaux Mdmoires de l'Academie Royale des Sciences et Belles-lettres de Bruxelles 2 171-202.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3