Sensible Energy Accounting with Abstract Metering for Multicore Systems

Author:

Liu Qixiao1ORCID,Moreto Miquel1,Abella Jaume2,Cazorla Francisco J.3,Jimenez Daniel A.4,Valero Mateo1

Affiliation:

1. Universitat Politècnica de Catalunya and Barcelona Supercomputing Center, Barcelona, Spain

2. Barcelona Supercomputing Center, Barcelona, Spain

3. Spanish National Research Council (IIIA-CSIC) and Barcelona Supercomputing Center, Barcelona, Spain

4. Texas A&M University, College Station, TX

Abstract

Chip multicore processors (CMPs) are the preferred processing platform across different domains such as data centers, real-time systems, and mobile devices. In all those domains, energy is arguably the most expensive resource in a computing system. Accurately quantifying energy usage in a multicore environment presents a challenge as well as an opportunity for optimization. Standard metering approaches are not capable of delivering consistent results with shared resources, since the same task with the same inputs may have different energy consumption based on the mix of co-running tasks. However, it is reasonable for data-center operators to charge on the basis of estimated energy usage rather than time since energy is more correlated with their actual cost. This article introduces the concept of Sensible Energy Accounting (SEA). For a task running in a multicore system, SEA accurately estimates the energy the task would have consumed running in isolation with a given fraction of the CMP shared resources. We explain the potential benefits of SEA in different domains and describe two hardware techniques to implement it for a shared last-level cache and on-core resources in SMT processors. Moreover, with SEA, an energy-aware scheduler can find a highly efficient on-chip resource assignment, reducing by up to 39% the total processor energy for a 4-core system.

Funder

European Research Council under the European Union's 7th FP

IBM and BSCCNS

ERC

Spanish Ministry of Science and Innovation

HiPEAC Network of Excellence

Ramon y Cajal postdoctoral fellowship

Chinese Scholarship Council

Spanish Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEDEA: A Sensible Approach to Account DRAM Energy in Multicore Systems;2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3