A Spatially-Aware Data-Driven Approach to Automatically Geocoding Non-Gazetteer Place Names

Author:

Sharma Praval1ORCID,Samal Ashok1ORCID,Soh Leen-Kiat1ORCID,Joshi Deepti2ORCID

Affiliation:

1. School of Computing, University of Nebraska-Lincoln, Lincoln, USA

2. Department of Cyber and Computer Sciences, The Citadel, Charleston, USA

Abstract

Human and natural processes such as navigation and natural calamities are intrinsically linked to the geographic space and described using place names. Extraction and subsequent geocoding of place names from text are critical for understanding the onset, progression, and end of these processes. Geocoding place names extracted from text requires using an external knowledge base such as a gazetteer. However, a standard gazetteer is typically incomplete. Additionally, widely used place name geocoding—also known as toponym resolution—approaches generally focus on geocoding ambiguous but known gazetteer place names. Hence, there is a need for an approach to automatically geocode non -gazetteer place names. In this research, we demonstrate that patterns in place names are not spatially random. Places are often named based on people, geography, and history of the area and thus exhibit a degree of similarity. Similarly, places that co-occur in text are likely to be spatially proximate as they provide geographic reference to common events. We propose a novel data-driven spatially-aware algorithm, Bhugol , that leverages the spatial patterns and the spatial context of place names to automatically geocode the non-gazetteer place names. The efficacy of Bhugol is demonstrated using two diverse geographic areas – USA and India. The results show that Bhugol outperforms well-known state-of-the-art geocoders.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3