SeeGera: Self-supervised Semi-implicit Graph Variational Auto-encoders with Masking

Author:

Li Xiang1ORCID,Ye Tiandi1ORCID,Shan Caihua2ORCID,Li Dongsheng2ORCID,Gao Ming1ORCID

Affiliation:

1. East China Normal University, China

2. Microsoft Research Asia, China

Funder

Shanghai Science and Technology Committee General Program

National Natural Science Foundation of China

Shanghai Pujiang Talent Program

Publisher

ACM

Reference42 articles.

1. Yuri Burda , Roger Grosse , and Ruslan Salakhutdinov . 2015. Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 ( 2015 ). Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2015. Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 (2015).

2. Jacob Devlin , Ming-Wei Chang , Kenton Lee , and Kristina Toutanova . 2018 . Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018). Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

3. Alberto Garcia Duran and Mathias Niepert . 2017. Learning graph representations with embedding propagation. Advances in neural information processing systems 30 ( 2017 ). Alberto Garcia Duran and Mathias Niepert. 2017. Learning graph representations with embedding propagation. Advances in neural information processing systems 30 (2017).

4. Arman Hasanzadeh Ehsan Hajiramezanali Krishna Narayanan Nick Duffield Mingyuan Zhou and Xiaoning Qian. 2019. Semi-implicit graph variational auto-encoders. In NeurIPS. 10711–10722. Arman Hasanzadeh Ehsan Hajiramezanali Krishna Narayanan Nick Duffield Mingyuan Zhou and Xiaoning Qian. 2019. Semi-implicit graph variational auto-encoders. In NeurIPS. 10711–10722.

5. Kaveh Hassani and Amir Hosein Khasahmadi . 2020 . Contrastive multi-view representation learning on graphs . In International Conference on Machine Learning. PMLR, 4116–4126 . Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view representation learning on graphs. In International Conference on Machine Learning. PMLR, 4116–4126.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative and Contrastive Paradigms Are Complementary for Graph Self-Supervised Learning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Semantic Evolvement Enhanced Graph Autoencoder for Rumor Detection;Proceedings of the ACM Web Conference 2024;2024-05-13

3. Masked Graph Autoencoder with Non-discrete Bandwidths;Proceedings of the ACM Web Conference 2024;2024-05-13

4. Contextual features online prediction for self-supervised graph representation;Expert Systems with Applications;2024-03

5. HopMAE: Self-supervised Graph Masked Auto-Encoders from a Hop Perspective;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3