1. Deyu Bo , Xiao Wang , Chuan Shi , and Huawei Shen . 2021 . Beyond Low-frequency Information in Graph Convolutional Networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI2021 . AAAI Press, 3950–3957. Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency Information in Graph Convolutional Networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI2021. AAAI Press, 3950–3957.
2. Aleksandar Bojchevski and Stephan Günnemann . 2017. Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815 ( 2017 ). Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815 (2017).
3. Joan Bruna , Wojciech Zaremba , Arthur Szlam , and Yann LeCun . 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 ( 2013 ). Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013).
4. Not all low-pass filters are robust in graph convolutional networks;Chang Heng;Advances in Neural Information Processing Systems,2021
5. Zhixian Chen , Tengfei Ma , and Yang Wang . 2022. When Does A Spectral Graph Neural Network Fail in Node Classification?arXiv preprint arXiv:2202.07902 ( 2022 ). Zhixian Chen, Tengfei Ma, and Yang Wang. 2022. When Does A Spectral Graph Neural Network Fail in Node Classification?arXiv preprint arXiv:2202.07902 (2022).