Self-Supervised Teaching and Learning of Representations on Graphs

Author:

Wan Liangtian1ORCID,Fu Zhenqiang1ORCID,Sun Lu2ORCID,Wang Xianpeng3ORCID,Xu Gang4ORCID,Yan Xiaoran5ORCID,Xia Feng6ORCID

Affiliation:

1. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, China

2. Department of Communication Engineering, Institute of Information Science Technology, Dalian Maritime University, China

3. State Key Laboratory of Marine Resource Utilization in South China Sea, School of Information and Communication Engineering, Hainan University, China

4. State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, China

5. Research Center of Big Data Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, China

6. School of Computing Technologies, RMIT University, Australia

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Liaoning Province

Fundamental Research Funds for the Central Universities

Zhejiang Lab

Publisher

ACM

Reference57 articles.

1. Piotr Bielak Tomasz Kajdanowicz and Nitesh V Chawla. 2021. Graph Barlow Twins: A self-supervised representation learning framework for graphs. arXiv preprint arXiv:2106.02466(2021). Piotr Bielak Tomasz Kajdanowicz and Nitesh V Chawla. 2021. Graph Barlow Twins: A self-supervised representation learning framework for graphs. arXiv preprint arXiv:2106.02466(2021).

2. Jie Chen , Tengfei Ma , and Cao Xiao . 2018 . FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling . In International Conference on Learning Representations. Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. In International Conference on Learning Representations.

3. Ting Chen , Simon Kornblith , Mohammad Norouzi , and Geoffrey Hinton . 2020 . A simple framework for contrastive learning of visual representations . In International Conference on Machine Learning. PMLR, 1597–1607 . Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning. PMLR, 1597–1607.

4. Djork-Arné Clevert Thomas Unterthiner and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289(2015). Djork-Arné Clevert Thomas Unterthiner and Sepp Hochreiter. 2015. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289(2015).

5. Michaël Defferrard , Xavier Bresson , and Pierre Vandergheynst . 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems 29 ( 2016 ). Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems 29 (2016).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multitask Dynamic Graph Attention Autoencoder for Imbalanced Multilabel Time Series Classification;IEEE Transactions on Neural Networks and Learning Systems;2024-09

2. Affinity Uncertainty-Based Hard Negative Mining in Graph Contrastive Learning;IEEE Transactions on Neural Networks and Learning Systems;2024-09

3. Dynamic Denoising of Contrastive Learning for GNN-based Node Embedding;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data;Briefings in Bioinformatics;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3