Implementation of O ( nm log n ) weighted matchings in general graphs

Author:

Mehlhorn Kurt1,Schäfer Guido1

Affiliation:

1. Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract

We describe the implementation of an algorithm which solves the weighted matching problem in general graphs with n vertices and m edges in time O(nm log n) . Our algorithm is a variant of the algorithm of Galil, Micali and Gabow [Galil et al. 1986] and extensively uses sophisticated data structures, in particular concatenable priority queues , so as to reduce the time needed to perform dual adjustments and to find tight edges in Edmonds' blossom-shrinking algorithm.We compare our implementation to the experimentally fastest implementation, named Blossom IV , due to Cook and Rohe [Cook and Rohe 1997]. Blossom IV requires only very simple data structures and has an asymptotic running time of O(n 2 m) . Our experiments show that our new implementation is superior to Blossom IV. A closer inspection reveals that the running time of Edmonds' blossom-shrinking algorithm in practice heavily depends on the time spent to perform dual adjustments and to find tight edges. Therefore, optimizing these operations, as is done in our implementation, indeed speeds-up the practical performance of implementations of Edmonds' algorithm.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference17 articles.

1. AHO A. V. HOPCROFT J. E. AND ULLMANN J.D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley.]] AHO A. V. HOPCROFT J. E. AND ULLMANN J.D. 1974. The Design and Analysis of Computer Algorithms. Addison-Wesley.]]

2. APPLEGATE D. AND COOK W. 1993. Solving large-scale matching problems. In D. JOHNSON AND C. McGEOCH Eds. Network Flows and Matchings Volume 12 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science pp. 557 - 576 . American Mathematical Society .]] APPLEGATE D. AND COOK W. 1993. Solving large-scale matching problems. In D. JOHNSON AND C. McGEOCH Eds. Network Flows and Matchings Volume 12 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science pp. 557-576. American Mathematical Society.]]

3. CHERKASSKY S. AND GOLDBERG A. PRF a Maxflow Code. www.intertrust.com/star/ goldberg/index.html.]] CHERKASSKY S. AND GOLDBERG A. PRF a Maxflow Code. www.intertrust.com/star/ goldberg/index.html.]]

4. On the use of optimal fractional matchings for solving the (integer) matching problem;DERIGS U.;Mathematical Programming,1986

5. Solving (large scale) matching problems combinatorially

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3