Making Machine-Learning Applications for Time-Series Sensor Data Graphical and Interactive

Author:

Kim Seungjun1,Tasse Dan1,Dey Anind K.1

Affiliation:

1. Carnegie Mellon University, Pennsylvania, United States

Abstract

The recent profusion of sensors has given consumers and researchers the ability to collect significant amounts of data. However, understanding sensor data can be a challenge, because it is voluminous, multi-sourced, and unintelligible. Nonetheless, intelligent systems, such as activity recognition, require pattern analysis of sensor data streams to produce compelling results; machine learning (ML) applications enable this type of analysis. However, the number of ML experts able to proficiently classify sensor data is limited, and there remains a lack of interactive, usable tools to help intermediate users perform this type of analysis. To learn which features these tools must support, we conducted interviews with intermediate users of ML and conducted two probe-based studies with a prototype ML and visual analytics system, Gimlets. Our system implements ML applications for sensor-based time-series data as a novel domain-specific prototype that integrates interactive visual analytic features into the ML pipeline. We identify future directions for usable ML systems based on sensor data that will enable intermediate users to build systems that have been prohibitively difficult.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3