Exploiting Stable Data Dependency in Stream Processing Acceleration on FPGAs

Author:

Sun Yuliang1ORCID,Wang Lanjun2,Wang Chen1,Wang Yu1

Affiliation:

1. Tsinghua University, China

2. University of Waterloo, Canada

Abstract

With the unique feature of fine-grained parallelism, field-programmable gate arrays (FPGAs) show great potential for streaming algorithm acceleration. However, the lack of a design framework, restrictions on FPGAs, and ineffective tools impede the utilization of FPGAs in practice. In this study, we provide a design paradigm to support streaming algorithm acceleration on FPGAs. We first propose an abstract model to describe streaming algorithms with homogeneous sub-functions (HSF) and stable data dependency (SDD), which we call the HSF-SDD model. Using this model, we then develop an FPGA framework, PE-Ring, that has the advantages of (1) fully exploiting algorithm parallelism to achieve high performance, (2) leveraging block RAM to serve large scale parameters, and (3) enabling flexible parameter adjustments. Based on the proposed model and framework, we finally implement a specific converter to generate the register-transfer level representation of the PE-Ring. Experimental results show that our method outperforms ordinary FPGA design tools by one to two orders of magnitude. Experiments also demonstrate the scalability of the PE-Ring.

Funder

973 project

Huawei Technologies Co. Ltd

National Natural Science Foundation of China

Joint fund of Equipment pre-Research and Ministry of Education

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference31 articles.

1. Mergeable summaries

2. Transaction processing on confidential data using cipherbase

3. The DataPath system

4. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models;Bilmes Jeff A.;Int. Comput. Sci. Inst.,1998

5. Querying and mining of time series data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3