Balancing Programmability and Silicon Efficiency of Heterogeneous Multicore Architectures

Author:

Terechko Andrei1,Hoogerbrugge Jan1,Alkadi Ghiath1,Guntur Surendra1,Lahiri Anirban1,Duranton Marc1,Wüst Clemens1,Christie Phillip1,Nackaerts Axel1,Kumar Aatish1

Affiliation:

1. NXP Semiconductors, The Netherlands

Abstract

Multicore architectures provide scalable performance with a lower hardware design effort than single core processors. Our article presents a design methodology and an embedded multicore architecture, focusing on reducing the software design complexity and boosting the performance density. First, we analyze characteristics of the Task-Level Parallelism in modern multimedia workloads. These characteristics are used to formulate requirements for the programming model. Then we translate the programming model requirements to an architecture specification, including a novel low-complexity implementation of cache coherence and a hardware synchronization unit. Our evaluation demonstrates that the novel coherence mechanism substantially simplifies hardware design, while reducing the performance by less than 18% relative to a complex snooping technique. Compared to a single processor core, the multicores have already proven to be more area- and energy-efficient. However, the multicore architectures in embedded systems still compete with highly efficient function-specific hardware accelerators. In this article we identify five architectural methods to boost performance density of multicores; microarchitectural downscaling, asymmetric multicore architectures, multithreading, generic accelerators, and conjoining. Then, we present a novel methodology to explore multicore design spaces, including the architectural methods improving the performance density. The methodology is based on a complex formula computing performances of heterogeneous multicore systems. Using this design space exploration methodology for HD and QuadHD H.264 video decoding, we estimate that the required areas of multicores in CMOS 45 nm are 2.5 mm 2 and 8.6 mm 2 , respectively. These results suggest that heterogeneous multicores are cost-effective for embedded applications and can provide a good programmability support.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3