On learning meaningful assert statements for unit test cases
Author:
Affiliation:
1. Washington and Lee University
2. Microsoft, Redmond, Washington
3. William & Mary
4. Università della Svizzera italiana (USI), Lugano, Switzerland
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3377811.3380429
Reference39 articles.
1. [n.d.]. Apache Maven. https://maven.apache.org [n.d.]. Apache Maven. https://maven.apache.org
2. [n.d.]. Utilizing Fast Testing to Transform Java Development into an Agile Quick Release Low Risk Process. http://www.agitar.com/ [n.d.]. Utilizing Fast Testing to Transform Java Development into an Agile Quick Release Low Risk Process. http://www.agitar.com/
3. 2019. ATLAS Anonymous Online Appendix: https://sites.google.com/view/atlas-nmt/home. 2019. ATLAS Anonymous Online Appendix: https://sites.google.com/view/atlas-nmt/home.
4. M. Almasi et al. [n.d.]. An Industrial Evaluation of Unit Test Generation: Finding Real Faults in a Financial Application. In ICSE-C'17. 10.1109/ICSE-SEIP.2017.27 M. Almasi et al. [n.d.]. An Industrial Evaluation of Unit Test Generation: Finding Real Faults in a Financial Application. In ICSE-C'17. 10.1109/ICSE-SEIP.2017.27
Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A3Test: Assertion-Augmented Automated Test case generation;Information and Software Technology;2024-12
2. Domain Adaptation for Code Model-Based Unit Test Case Generation;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11
3. UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11
4. Deep learning for code generation: a survey;Science China Information Sciences;2024-08-20
5. Optimizing Search-Based Unit Test Generation with Large Language Models: An Empirical Study;Proceedings of the 15th Asia-Pacific Symposium on Internetware;2024-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3