Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey

Author:

Hort Max1,Chen Zhenpeng2,Zhang Jie M.3,Harman Mark2,Sarro Federica2

Affiliation:

1. Simula Research Laboratory, Norway

2. University College London, United Kingdom

3. King’s College London, United Kingdom

Abstract

This paper provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning bias mitigation for ML classifiers. These methods can be distinguished based on their intervention procedure (i.e., pre-processing, in-processing, post-processing) and the technique they apply. We investigate how existing bias mitigation methods are evaluated in the literature. In particular, we consider datasets, metrics and benchmarking. Based on the gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating bias mitigation methods?), we hope to support practitioners in making informed choices when developing and evaluating new bias mitigation methods.

Publisher

Association for Computing Machinery (ACM)

Reference419 articles.

1. 2001. Dutch Central Bureau for Statistics Volkstelling. http://easy.dans.knaw.nl/dms . Retrieved on June 12, 2022 . 2001. Dutch Central Bureau for Statistics Volkstelling. http://easy.dans.knaw.nl/dms. Retrieved on June 12, 2022.

2. 2016. Medical Expenditure Panel Survey dataset. https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192 . Retrieved on June 12, 2022 . 2016. Medical Expenditure Panel Survey dataset. https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192. Retrieved on June 12, 2022.

3. 2017. The Heritage Health Prize dataset. https://www.kaggle.com/c/hhp . Retrieved on June 12, 2022 . 2017. The Heritage Health Prize dataset. https://www.kaggle.com/c/hhp. Retrieved on June 12, 2022.

4. 2017. Stop Question and Frisk dataset. http://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page. Retrieved on June 12 2022. 2017. Stop Question and Frisk dataset. http://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page. Retrieved on June 12 2022.

5. 2018. Home Credit Default Risk. https://www.kaggle.com/c/home-credit-default-risk . Retrieved on June 12, 2022 . 2018. Home Credit Default Risk. https://www.kaggle.com/c/home-credit-default-risk. Retrieved on June 12, 2022.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing bias in bagging and boosting regression models;Scientific Reports;2024-08-08

2. Investigating and Mitigating the Performance–Fairness Tradeoff via Protected-Category Sampling;Electronics;2024-07-31

3. Fairness Testing: A Comprehensive Survey and Analysis of Trends;ACM Transactions on Software Engineering and Methodology;2024-06-04

4. A Comprehensive Review of Bias in Deep Learning Models: Methods, Impacts, and Future Directions;Archives of Computational Methods in Engineering;2024-05-08

5. Manipulation of sources of bias in AI device development;Medical Imaging 2024: Computer-Aided Diagnosis;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3