The StoryTeller

Author:

Elbakly Rizanne1,Youssef Moustafa2

Affiliation:

1. Egypt-Japan Univ. of Science and Technology (E-JUST), Egypt

2. Alexandria University, Egypt

Abstract

Due to the recent proliferation of location-based services indoors, the need for an accurate floor estimation technique that is easy to deploy in any typical multi-story building is higher than ever. Current approaches that attempt to solve the floor localization problem include sensor-based systems and 3D fingerprinting. Nevertheless, these systems incur high deployment and maintenance overhead, suffer from sensor drift and calibration issues, and/or are not available to all users. In this paper, we propose StoryTeller, a deep learning-based technique for floor prediction in multi-story buildings. StoryTeller leverages the ubiquitous WiFi signals to generate images that are input to a Convolutional Neural Network (CNN) which is trained to predict loors based on detected patterns in visible WiFi scans. Input images are created such that they capture the current WiFi-scan in an AP-independent manner. In addition, a novel virtual building concept is used to normalize the information in order to make them building-independent. This allows StoryTeller to reuse a trained network for a completely new building, significantly reducing the deployment overhead. We have implemented and evaluated StoryTeller using three different buildings with a side-by-side comparison with the state-of-the-art floor estimation techniques. The results show that StoryTeller can estimate the user's floor at least 98.3% within one floor of the actual ground truth floor. This accuracy is consistent across the different testbeds and for scenarios where the models used were trained in a completely different building than the tested building. This highlights StoryTeller's ability to generalize to new buildings and its promise as a scalable, low-overhead, high-accuracy floor localization system.

Funder

Google Inc.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DumbLoc: Dumb Indoor Localization Framework Using Wi-Fi Fingerprinting;IEEE Sensors Journal;2024-05-01

2. Accurate and efficient floor localization with scalable spiking graph neural networks;Satellite Navigation;2024-03-11

3. UniCellular: An Accurate and Ubiquitous Floor Identification System using Single Cell Tower Information;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

4. FIS-ONE: Floor Identification System with One Label for Crowdsourced RF Signals;2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS);2023-07

5. Recent advances in floor positioning based on smartphone;Measurement;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3